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Abstract

Transcription factor binding to a gene regulatory region induces or represses its expression.
Binding and expression target analysis (BETA) integrates the binding and gene expression data
to predict this function. First, the regulatory potential of the factor is modeled based on the
distance of its binding sites from the transcription start sites in a decay function. Then the
differential expression statistics from an experiment where this factor was perturbed represent
the binding effect. The rank product of the two values is employed to order in importance.
This algorithm was originally implemented in Python. We reimplemented the algorithm in R
to take advantage of existing data structures and other tools for downstream analyses. Here,
we attempted to replicate the findings in the original BETA paper. We applied the new imple-
mentation to the same datasets using default and varying inputs and cutoffs. We successfully
replicated the original results. Moreover, we showed that the method was appropriately influ-
enced by varying the input and was robust to choices of cutoffs in statistical testing.
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Introduction

The binding of a transcription factor to a gene regulatory region (e.g., gene pro-
moter) can have the effect of inducing or repressing its expression [1]. Potential
binding sites can be identified using ChIP experiments as the enriched regions
within aligned reads (peaks). High throughput ChIP experiments produce hun-
dreds or thousands of peaks for most factors [2]. Therefore, methods to determine
which of these sites are true targets and whether they are functional or not are
needed [3]. On the other hand, perturbing a transcription factor coding gene by
overexpression or knockdown provides useful information on the function of the
factor, such as by measuring the changes in gene expression [4, 5]. Methods exist
to integrate the binding and the gene expression data from the factor perturbation
to identify the real target regions (e.g., genes) and predict the transcription factor
role [6].

Binding and expression target analysis (BETA) combines binding sites from
ChIP peaks and expression data from factor perturbation experiments to predict
direct target genes [7]. First, the regulatory potential of a factor on a given gene is
calculated as the sum of the transformed distance between each binding peak and
the gene transcription start site. Then genes are ranked based on the product of
the regulatory potential and signed statistics from differential gene expression of
control vs. factor perturbation (overexpression or knockdown). To our knowledge,
the original BETA implementation is in Python and has not been replicated or
implemented in other languages.

In this article, we attempted to replicate the results reported in the original
BETA paper using a new implementation in R [8]. We contrasted the two packages
using the default and varying parameters. First, we compared the output of the
two implementations to the original findings. Using the new code, we reproduced
the findings from three different datasets. Second, we repeated the procedure by
varying the inputs and examining the results. Finally, we examined the robustness
of the suggested statistical method to the required choices of cutoffs.
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Table 1: Datasets of transcription factor binding and gene expression under factor pertur-
bations.

Factor Cell Line Genome Treatment Binding Data Expression Data

AR LNCaP hg19 DHT [9] [9]
ESR1 MCF-7 hg19 E2 [10] [11]
Tet1 ES Cells mm9 Knockdown [12] [12]

Methods

Implementing BETA in R

We implemented the procedure described in the original paper in an R package.
This package is distributed as a Bioconductor R package (target) [8]. First, the
regions of interest (e.g., transcripts/genes) are resized to the desired distance on
either side of the start site. Second, peaks are assigned to the regions they overlap
with, and their distance from the region is calculated and transformed as described
earlier. The transformed distance for each peak is the peak score, and the sum
of scores for all peaks in a region is its regulatory potential. Third, the region
rank product is the product of the ranks of the regulatory potential and the signed
statistics from the expression data.

Testing datasets

We used three sets of data from the original BETA paper to evaluate the perfor-
mance and degree of replication of BETA using the new R implementation (Ta-
ble 1). The first dataset is from LNCaP, a human prostate cancer cell line treated
with dihydrotestosterone (DHT) for 16 hours. The latter is an agonist of the an-
drogen receptor (AR), the transcription factor in question. Similarly, the second
dataset is from the MCF-7 human breast cancer cell line treated with the estro-
gen receptor 1 (ESR1) agonist E2. The last dataset is from mouse embryonic stem
(ES) cells, where a DNA demethylase encoding gene Tet1 was knocked down.
Each dataset contains ChIP-seq and microarray gene expression data. Processed
data were obtained in the form of binding peaks and differential expression comb
comparing the treated/knockdown cells vs. controls.
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Measures of agreement & similarity

We employed different measures of agreement/similarity between the new and
the original implementation. The predicted function of a transcription factor can
be inducing or repressive. One measure is the visual inspection of the empirical
distribution function (ECDF) graph of the regulatory potentials. In addition, the
top-ranking genes from each factor can be compared between the different imple-
mentations. More formally, we devised a measure of results similarity referred to
as concordance, which is the fraction of intersecting genes in each set of N top-
ranking genes from different runs. The higher the concordance value, the more
the order of the ranks is preserved.

Replication strategy

To evaluate the performance of the R implementation of BETA, we applied the
standard analysis with the defaults to get the associated peaks and direct gene
targets of the three transcription factors. First, we compared the output to that
of the original paper. Second, we applied the analysis by varying the input, the
reference genome, the signed gene expression statistics, and the allowed distance
between the peaks and the transcription start sites. The output ranks from varying
inputs were compared with the gene ranks from the default inputs. Finally, we
applied different cutoffs on the ranks during the statistical testing of the predicted
functions.

Software environment & reproducibility

The software environment where this replication was produced is available as a
Docker image (https://hub.docker.com/r/mahshaaban/rebeta).
The R implementation of BETA is available as an open-source R package
(https://github.com/MahShaaban/target). The code to obtain the
test data, apply the replication strategy and reproduce the figures and tables in
this manuscript is also available under an open-source license
(https://github.com/MahShaaban/rebeta).
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Table 2: Transcription factor top ranking gene targets.

Factor Chr Start End Refseq Symbol Rank

AR chr19 51276688 51476687 NR 045762 KLK2 7.69e-07
chr19 51276688 51476687 NM 001002231 KLK2 1.54e-06
chr19 51276688 51476687 NM 001256080 KLK2 1.54e-06

ESR1 chr2 11574241 11774240 NM 014668 GREB1 3.06e-08
chr6 122831376 123031375 NM 032471 PKIB 3.67e-07
chr6 122831376 123031375 NM 181795 PKIB 3.67e-07

Tet1 chr2 17870077 18070076 NM 028317 Skida1 7.61e-07
chr11 2924029 3124028 NR 003518 Pisd-ps3 2.22e-06
chr11 2924023 3124022 NR 003517 Pisd-ps1 5.59e-06

Results & Discussion

Transcription factors appropriately group as inducers and repressors

One of the main goals of BETA is to determine whether a transcription factor is
an inducer/activator or repression/deactivator of its targets. To achieve that, BETA
integrates binding and expression data. The function of the factor is determined
by the distance of its binding sites to a transcription start site and the effect of
its perturbation on the target gene. All possible targets are ranked based on the
score they are assigned using those two pieces of information. Activators should
have more up-regulated targets ranking higher than down- or non-regulated tar-
gets. Therefore, to replicate, the new implementation in R is expected to classify
transcription factors in the appropriate category using the same datasets as the
original BETA publications.

Using the new implementation, we could replicate the predicted function of
three transcription factors in three cell lines. ECDF graphs show the fraction of
targets at less than or equal to a certain regulatory potential. Androgen receptor
(AR) was found to induce more of higher ranking genes in the prostate cancer
cell line LNCaP (Figure 1A). By contrast, the estrogen receptor 1 (ESR1) and the
methylcytosine dioxygenase 1 (TET1) assumed repressive functions on their tar-
gets in the breast cancer cell line MCF-7 and mouse embryonic stem (ES) cells
(Figure 1). Moreover, the top-ranking genes of the three factors matched the pre-
dicted targets in the original BETA article (Table 2).
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Figure 1: Predicted inducing and repressive function of the transcription factors. Distances
between binding peaks of the transcription factors A) AR (original article; Figure 2A), B) ESR1
(original article; Figure 3B), and C) TET1 (original article; Figure 3B) were used to calculate the
regulatory potential of their target genes in LNCaP, MCF-7 and mouse ES, respectively. The em-
pirical distribution function (ECDF) of the regulatory potential ranks is shown by groups. Targets
were divided into groups; down- (blue) or Up- (red) and otherwise None-regulated (gray) by the
10 and 90 percentiles of the t-statistics from the differential expression of treated/knockdown vs.
controls.

Gene targets ranks are influenced by varying the inputs

Another important condition for replicating the original method is to be able to
reproduce the expected results by varying the inputs. The default inputs used in
the case of the testing datasets are the reference genomes hg19/mm9, a distance
of 100kb to locate the peaks, and the t-statistics as the effect of the factor pertur-
bation on the gene expression. We expect the various inputs to influence the target
ranking. We measured the concordance of the results from a run using the input
and another by varying a single input.

As expected, changing the reference genome to hg18 or mm10 in the case
of the human and mouse cell lines had the largest influence on the results. The
discordance of the results from the two results is more pronounced in the small-
sized sets and tended to decrease as more of the genes were included in the test
set (Figure 2). This effect may be explained by the total number of genes in each
reference genome, including some genes in one genome but not the other, or using
different coordinates in different genomes.

Since the fold-change and the t-statistics from the expression data are related,
we expected varying the input to have little to no effect on the gene ranks. This was
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Figure 2: Concordance of the gene ranks between default and varying outputs. Direct targets
of the transcription factors A) AR, B) ESR1, and C) TET1 in LNCaP, MCF-7, and mouse ES,
respectively, were identified and ranked using BETA with the defaults and varying the inputs. The
fraction of intersecting genes in each set of N top-ranking genes from different runs (Concordance)
is shown for 1 to 10000 top targets. The default inputs are hg19/mm9 reference genome for human
and mouse cells, respectively; t-statistics from the differential expression of treated/knockdown vs.
control and an allowed distance of 100kb. Inputs were changed one at a time.

largely the case since the degree of concordance remained above 80% between the
two runs (Figure 2). Using only half (50kb), the default distance to include binding
peaks had a bigger effect (about 30%) on the concordance between the runs. We
expected the higher-ranking genes to retain their higher ranks since the rank is
relatively distance-dependant. This was the case for the transcription factors AR
and ESR1 in the human cell lines (Figure 2A&B). However, this pattern was not
true for the TET1 targets in the mouse ES. This could be due to the nature of the
factor binding or the different genome sizes.

Testing results are robust to cutoff choices

The original BETA paper suggested using the Kolmogorov-Smirnov (KS) test to
determine whether the regulated groups of gene targets differ from each other or
the none regulated targets. KS tests whether the groups’ cumulative distribution
functions in the regulatory potential are drawn from different distributions [6]. The
choice of the groups of targets, therefore, is critical. We used different quantile
cutoffs to group the targets of the three factors and applied the KS test to the
ranks. Ultimately, varying the grouping didn’t affect test results. The calculated
statistics were close no matter which cutoff was used, and the change was also
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Table 3: Statistical testing of induced and repressed targets with varying the grouping cutoff.

Factor Quantiles
Down Up

stat p-value stat p-value

AR (0.1-0.9) 0.03 4e-01 0.21 0e+00
(0.2-0.8) 0.03 1e-01 0.13 0e+00
(0.3-0.7) 0.03 3e-02 0.09 3e-15
(0.4-0.6) 0.04 1e-02 0.07 7e-08

ESR1 (0.1-0.9) 0.11 6e-13 0.08 4e-07
(0.2-0.8) 0.07 9e-10 0.04 2e-03
(0.3-0.7) 0.06 2e-06 0.05 1e-04
(0.4-0.6) 0.08 1e-10 0.03 2e-01

Tet1 (0.1-0.9) 0.15 0e+00 0.04 1e-02
(0.2-0.8) 0.15 0e+00 0.03 6e-03
(0.3-0.7) 0.12 0e+00 0.02 2e-01
(0.4-0.6) 0.11 0e+00 0.03 2e-02

proportional for the up and down-regulated groups (Table 3).

Differences in the R implementation and analysis decisions

Differences between the replication and the original article could be attributed to
two sources: the specifics of the R implementation and some analysis decisions.
The following explains the apparent differences and how they would affect the
replication of the algorithm.

• In the original BETA article, the curves of the ECDF of the different groups of
regulated genes do not reach up to 1. This explains the differences between
Figure 1 and Figures 2A, 3B, and 3A in the original paper. The aggregate
functions of the three transcription factors were predicted the same despite
using different presentations of the results.

• In the R implementation, genes/transcripts are resized to a distance of 200kb
around the TSS (regions of interest). The resized regions are the ones kept
in the subsequent analysis steps and the final output. This is why Table 2
may seem different from the text of the original paper. This approach is
more transparent since it exposes the true genomic coordinates on which the
calculations are based.
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• To rank the targets, the product of ranks of the regulatory potential and the
signed statistics are divided by the total number of genes. That’s why there
are fractions in the final ranks in both the original paper and the current
manuscript (Table 2). Different values were given to tied features, unlike
in the original implementation. The absolute values of the ranks between the
two implementations may differ, but the order is preserved.

Conclusions

Together, these findings indicate that the results reported in the original BETA
paper were replicated using a new independent implementation of the method in
R. First, the ranking of the top targets individually and the aggregate predicted
function of three factors were appropriately classified. Second, varying the input
largely had the expected influence on the results. Finally, the proposed statistical
testing method was robust to the choices in grouping the targets.
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